《深度学习基于Matlab的设计实例深度学习教程书籍》[68M]百度网盘|pdf下载|亲测有效
《深度学习基于Matlab的设计实例深度学习教程书籍》[68M]百度网盘|pdf下载|亲测有效

深度学习基于Matlab的设计实例深度学习教程书籍 pdf下载

出版社 蓝墨水图书专营店
出版年 2025
页数 390页
装帧 精装
评分 9.0(豆瓣)
8.99¥ 10.99¥

内容简介

本篇主要提供深度学习基于Matlab的设计实例深度学习教程书籍电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com











出版社: 北京航空航天大学出版社 ISBN:9787512426665版次:1商品编码:12324699包装:平装开本:16开出版时间:2018-03-01用纸:胶版纸

 

产品特色

海报(深度学习:基于MATLAB的设计实例).jpg

内容简介

深度学习:基于Matlab的设计实例

本书共包含6章内容,可以分为3个主题。书中例子均用MATLAB编写而成。

第1个主题是机器学习。深度学习起源于机器学习,这意味着如果想要理解深度学习的本质,就必须在某种程度上知道机器学习背后的理念。第1章从机器学习与深度学习的关系开始讲起,随后是解决问题的策略和机器学习的基本局限性。

第2个主题是人工神经网络这是第2~4章的重点内容。由于深度学习就是采用一种神经网络的机器学习,所以不能将神经网络与深度学习分开。第2章从神经网络的基本概念讲起:它的工作原理、体系结构和学习规则,也讲到了神经网络由简单的单层结构演化为复杂的多层结构的原因。第3章介绍了反向传播算法,它是神经网络中一种重要和典型的学习规则,深度学习也使用这种算法。本章解释了代价函数和学习规则是如何联系起来的,哪一种代价函数在深度学习中被广泛使用。第4章介绍了将神经网络应用到分类问题中的方法。其中单列一节专门讲分类,因为它是目前流行的一种深度学习应用。例如图像识别是一个分类问题,也是深度学习的一种主要应用。

第3个主题是深度学习,也是本书的重点,将在第5章和第6章中讲解。第5章介绍了使深度学习能够产生卓越性能的驱动因素。第6章讲解了卷积神经网络,本章首先介绍了卷积神经网络的基本概念和结构,并与前面的图像识别算法进行了比较;随后解释了卷积层和池化层的作用和运算方法,它们是卷积神经网络的重要组成部分。第6章也包含了一个用卷积神经网络进行数字图像识别的例子,并研究了图像通过各层的演化过程。

 

作者简介

Phil Kim,博士,从事无人驾驶飞机自主飞行算法和机载软件的开发和研制工作。同时,他作为一名经验丰富的MATLAB程序员,一直致力于使用MATLAB进行人工智能、深度学习的大数据集绘制和分析算法的研究,先后在美国出版了MATLAB Deep Learning: with Machine Learning, Neural Networks and Artificial Intelligence和Deep Learning for Beginners: with MATLAB Examples 等书籍,在人工智能和MATLAB领域享有较高声誉。

译者简介

邹伟,副研究员,北京睿客邦科技有限公司CEO,并成立了中科院邹博人工智能研究中心(杭州站)等产研机构;研究方向为机器学习、数据挖掘、计算几何等领域,研究成果已成功应用于大型气象设备的图像与文本挖掘、金融产品AI化、股票交易与预测、高速公路流量预测和分析、传统农资产品价格预测和决策等领域;获得发明专利4项,著作权3个。

 

内页插图

    

目录

第1章 机器学习

1.1 机器学习与深度学习

1.2 什么是机器学习

1.3 机器学习的挑战

1.4 过拟合

1.5 直面过拟合

1.6 机器学习的类型

1.7 分类和回归

1.8 总 结

第2章 神经网络

2.1 概 述

2.2 神经网络节点

2.3 多层神经网络

2.4 神经网络的监督学习

2.5 单层神经网络训练:增量规则

2.6 广义增量规则

2.7 随机梯度下降算法、批量算法和小批量算法

2.7.1 随机梯度下降算法

2.7.2 批量算法

2.7.3 小批量算法

2.8 示例:增量规则

2.8.1 随机梯度下降算法的实现

2.8.2 批量算法的实现

2.8.3 随机梯度下降算法与批量算法的比较

2.9 单层神经网络的局限性

2.10 总 结

第3章 训练多层神经网络

3.1 概 述

3.2 反向传播算法

3.3 示 例

3.3.1 XOR问题

3.3.2 动量法(Momentum)

3.4 代价函数和学习规则

3.5 示 例

3.5.1 交叉熵函数

3.5.2 代价函数的比较

3.6 总 结

第4章 神经网络及其分类

4.1 概 述

4.2 二分类

4.3 多分类

4.4 示例:多分类

4.5 总 结

第5章 深度学习

5.1 概 述

5.2 深度神经网络的进化

5.2.1 梯度消失

5.2.2 过拟合

5.2.3 计算量的增加

5.3 示 例

5.3.1 ReLU 函数

5.3.2 节点丢弃

5.4 总 结

第6章 卷积神经网络

6.1 概 述

6.2 卷积神经网络的架构

6.3 卷积层

6.4 池化层

6.5 示例:MNIST

6.6 总 结

索 引