本篇主要提供解析深度学习语音识别实践深度神经网络核心算法深度学习在语音识别基础应用书籍机器学习入门教电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
商品基本信息,请以下列介绍为准 | |
商品名称: | 解析深度学习语音识别实践 深度学习语音识别应用书籍 深度学习技术细节图书 传统语音识别理论书 机器学习书籍 电子工业正版 (从零起步了解神经网络与深度学习,AlphaGo大胜李世石的背后玄机) |
作者: | (美)俞栋//邓力 著作 俞凯//钱彦? 译者 |
译者: | 俞凯//钱彦 |
市场价: | 109元 |
ISBN号: | 9787121287961 |
出版社: | 电子工业出版社 |
商品类型: | 图书 |
其他参考信息(以实物为准) | ||
装帧:平装 | 开本:其他 | 语种:中文 |
出版时间:2016-07-01 | 版次:1 | 页数:290 |
印刷时间:2016-07-01 | 印次:1 | 字数:378千字 |
主编 | |
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点。AlphaGo背后的工作原理“深度学习”也跳入大众的视野。什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中可以大获全胜?人工智终将会取代人类智慧吗? 本书结合日常生活中的寻常小事,生动形象地阐述了神经网络与深度学习的基本概念、原理和实践,案例丰富,深入浅出。对于正在进入人工智能时代的我们,这些内容无疑可以帮助我们更好地理解人工智能的原理,丰富我们对人类自身的认识,并启发我们对人机智能之争更深一层的思考与探索。 |
目录 | |
译者序 iv 序 vii 前言 ix 术语缩写 xxii 符号 xxvii 第 1 章 简介 1 1.1 自动语音识别:更好的沟通之桥 . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 人类之间的交流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 人机交流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 语音识别的基本结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 全书结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 diyi部分:传统声学模型 . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 第二部分:深度神经网络 . . . . . . . . . . . . . . . . . . . . . . 6 1.3.3 第三部分:语音识别中的 DNN-HMM 混合 . . . . . . . . . . 7 1.3.4 第四部分:深度神经网络中的表征学习 . . . . . . . . . . . . . . 7 1.3.5 第五部分:的深度模型 . . . . . . . . . . . . . . . . . . . . . 7 diyi部分 传统声学模型 9 第 2 章 混合高斯模型 11 2.1 随机变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 高斯分布和混合高斯随机变量 . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 参数估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 采用混合高斯分布对语音特征建模 . . . . . . . . . . . . . . . . . . . . . 16 第 3 章 隐马尔可夫模型及其变体 19 3.1 介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 马尔可夫链 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 序列与模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 隐马尔可夫模型的性质 . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 隐马尔可夫模型的仿真 . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 隐马尔可夫模型似然度的计算 . . . . . . . . . . . . . . . . . . . . 24 3.3.4 计算似然度的高效算法 . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.5 前向与后向递归式的证明 . . . . . . . . . . . . . . . . . .& ...... |
精彩内容 | |
很多朋友告诉我,一本书总是要加一个前言才算完整。如果书没有前言,就好像只有山没有水一样,没有意境。 对我来说,这是我的**本技术科普类读物。之所以把它称作**本,是因为我从前没写过书,哪怕是一篇超过4万字的文章(论文不算)都没写过,所以听编辑说写书有字数要求时,我都没有概念,心想不就写本书吗?easy! 写着写着发现不对了,自己没有为一本书建立好整体知识体系!从2014年开始断断续续地写着,中间有段时间甚至想过放弃。我之所以没放弃,无非是因为觉得做事要有始有终。如果我写得不好,那是我的能力有限;如果因为一些之前估计不到的难度就放弃了,那是态度问题! 为什么说这是一本科普类读物呢?至少在我写书时,很多人(都是IT、软件这个行业的人)对于神经网络、深度学习(Deep Learning)等都毫无概念,如果连这些人对神经网络等都没有概念,可以想象其普及程度有多低。但我觉得深度学习并不是只有大学学府或几个相关的学生才能研究它;并不是只有公司里这个领域的专家才能研究它,它是属于整个大众的东西。 对于技术层面的东西,将会慢慢简化再简化,如同编程语言一样,开始是汇编语言,后来是C语言,再后来有了C++,再后来有了Java,甚至出现了Python、JavaScript,它们降低了进入门槛,可以让更多人 ...... |
商品名称:解析深度学习语音识别实践 深度学习语音识别应用书籍 深度学习技术细节图书 传统语音识别理论书 机器学习书籍 电子工业正版(从零起步了解神经网络与深度学习,AlphaGo大胜李世石的背后玄机)