本篇主要提供大数据导论ThomasErl,WajidKhattak,PaulBuhler电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
图书基本信息 | |||
图书名称 | 大数据导论(英文版) | 作者 | Thomas Erl, Wajid Khattak, Pau |
定价 | 59元 | 出版社 | 机械工业出版社 |
ISBN | 9787111580980 | 出版日期 | 2017-10-01 |
字数 | 页码 | 209 | |
版次 | 装帧 | 平装 | |
开本 | 16开 | 商品重量 |
内容提要 | |
本书是面向商业和技术专业人员的大数据指南,清楚地介绍了大数据相关的概念、理论、术语与基础技术,并使用真实连贯的商业案例以及简单的图表,帮助读者更清晰地理解大数据技术。本书可作为高等院校相关专业“大数据基础”“大数据导论”等课程的教材,也可供有实践经验的软件开发人员、管理人员和所有对大数据感兴趣的人士阅读。 |
目录 | |
Contents PART I: THE FUNDAMENTALS OF BIG DATA CHAPTER 1: Understanding Big Data 3 Concepts and Terminology 5 Datasets 5 Data Analysis 6 Data Analytics 6 Descriptive Analytics 8 Diagnostic Analytics 9 Predictive Analytics 10 Prescriptive Analytics 11 Business Intelligence (BI) 12 Key Performance Indicators (KPI) 12 Big Data Characteristics 13 Volume 14 Velocity 14 Variety 15 Veracity 16 Value 16 Different Types of Data 17 Structured Data 18 Unstructured Data 19 Semi-structured Data 19 Metadata 20 Case Study Background 20 History 20 Technical Infrastructure and Automation Environment 21 Business Goals and Obstacles 22 Case Study Example 24 Identifying Data Characteristics 26 Volume 26 Velocity 26 Variety 26 Veracity 26 Value 27 Identifying Types of Data 27 CHAPTER 2: Business Motivations and Drivers for Big Data Adoption 29 Marketplace Dynamics 30 Business Architecture 33 Business Process Management 36 Information and Communications Technology 37 Data Analytics and Data Science 37 Digitization 38 Affordable Technology and Commodity Hardware 38 Social Media 39 Hyper-Connected Communities and Devices 40 Cloud Computing 40 Inter of Everything (IoE) 42 Case Study Example 43 CHAPTER 3: Big Data Adoption and Planning Considerations 47 Organization Prerequisites 49 Data Procurement 49 Privacy 49 Security 50 Provenance 51 Limited Realtime Support 52 Distinct Performance Challenges 53 Distinct Governance Requirements 53 Distinct Methodology 53 Clouds 54 Big Data Analytics Lifecycle 55 Business Case Evaluation 56 Data Identification 57 Data Acquisition and Filtering 58 Data Extraction 60 Data Validation and Cleansing 62 Data Aggregation and Representation 64 Data Analysis 66 Data Visualization 68 Utilization of Analysis Results 69 Cas |