本篇主要提供基于Bert模型的自然语言处理实战在PyTorch框架中用BERT模型完成自然语言处理NLP电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
书名:基于Bert模型的自然语言处理实战
定价:139.00
出版社:电子工业出版社
版次:1
出版时间:2021年07月
开本:16
作者:李金洪
ISBN编码:9787121414084
本书介绍如何在PyTorch框架中使用BERT模型完成自然语言处理(NLP)任务。BERT模型是当今处理自然语言任务效果#好的模型。掌握了该模型,就相当于掌握了当今主流的NLP技术。本书共3篇。1篇介绍了神经网络的基础知识、NLP的基础知识,以及编程环境的搭建;2篇介绍了PyTorch编程基础,以及BERT模型的原理、应用和可解释性;3篇是BERT模型实战,帮助读者开阔思路、增长见识,使读者能够真正驾驭BERT模型,活学活用,完成自然语言处理任务。通过本书,读者可以熟练地在PyTorch框架中开发并训练神经网络模型,快速地使用BERT模型完成各种主流的自然语言处理任务,独立地设计并训练出针对特定需求的BERT模型,轻松地将BERT模型封装成Web服务部署到云端。本书结构清晰、案例丰富、通俗易懂、实用性强,适合对自然语言处理、BERT模型感兴趣的读者作为自学教程。另外,本书也适合社会培训学校作为培训教材,还适合计算机相关专业作为教学参考书。
1篇 入门——基础知识与编程框架
1章 BERT模型很强大,你值得拥有 /2
★1.1 全球欢腾,喜迎BERT模型 /2
★1.2 为什么BERT模型这么强 /3
★1.3 怎么学习BERT模型 /4
1.3.1 BERT模型的技术体系 /4
1.3.2 学好自然语言处理的4件套——神经网络的基础知识、NLP的基础知识、编程框架的使用、BERT模型的原理及应用 /4
1.3.3 学习本书的前提条件 /5
★1.4 自然语言处理的技术趋势 /5
1.4.1 基于大规模的高精度模型 /6
1.4.2 基于小规模的高精度模型 /6
1.4.3 基于小样本训练的模型 /6
2章 神经网络的基础知识——可能你掌握得也没有那么牢 /7
★2.1 什么是神经网络 /7
2.1.1 神经网络能解决哪些问题 /7
2.1.2 神经网络的发展 /7
2.1.3 什么是深度学习 /8
2.1.4 什么是图神经网络 /8
2.1.5 什么是图深度学习 /9
★2.2 神经网络的工作原理 /10
2.2.1 了解单个神经元 /10
2.2.2 生物神经元与计算机神经元模型的结构相似性 /12
2.2.3 生物神经元与计算机神经元模型的工作流程相似性 /12
2.2.4 神经网络的形成 /13
★2.3 深度学习中包含了哪些神经网络 /13
2.3.1 全连接神经网络 /13
2.3.2 卷积神经网络 /17
2.3.3 循环神经网络 /23
2.3.4 带有注意力机制的神经网络 /30
2.3.5 自编码神经网络 /34
★2.4 图深度学习中包含哪些神经网络 /36
2.4.1 同构图神经网络 /37
2.4.2 异构图神经网络 /37
★2.5 激活函数——加入非线性因素,以解决线性模型的缺陷 /38
2.5.1 常用的激活函数 /38
2.5.2 更好的激活函数——Swish()与Mish() /41
2.5.3 更适合NLP任务的激活函数——GELU() /43
2.5.4 激活函数总结 /44
2.5.5 分类任务与Softma算法 /44
★2.6 训练模型的原理 /45
2.6.1 反向传播与BP算法 /47
2.6.2 神经网络模块中的损失函数 /49
2.6.3 学习率 /50
2.6.5 优化器 /51
2.6.6 训练模型的相关算法,会用就行 /52
★2.7 【实例】用循环神经网络实现位减法 /52
★2.8 训练模型中的常见问题及优化技巧 /56
2.8.1 过拟合与欠拟合问题 /56
2.8.2 改善模型过拟合的方法 /56
2.8.3 了解正则化技巧 /57
2.8.4 了解Dropout技巧 /57
2.8.5 Targeted Dropout与Multi-sample Dropout /58
2.8.6 批量归一化(BN)算法 /59
2.8.7 多种BN算法的介绍与选取 /64
2.8.8 全连接网络的深浅与泛化能力的联系 /64
3章 NLP的基础知识——NLP没那么“玄” /65
★3.1 NLP的本质与原理 /65
3.1.1 情感分析、相似度分析等任务的本质 /65
3.1.2 完形填空、实体词识别等任务的本质 /66
3.1.3 文章摘要任务、问答任务、翻译任务的本质 /67
★3.2 NLP的常用工具 /68
3.2.1 自然语言处理工具包——SpaCy /68
3.2.2 中文分词工具——Jieba /69
3.2.3 中文转拼音工具——Pypinyin /69
3.2.4 评估翻译质量的算法库——SacreBLEU /70
★3.3 计算机中的字符编码 /70
3.3.1 什么是ASCII编码 /71
3.3.2 为什么会出现乱码问题 /71
3.3.3 什么是Unicode /71
3.3.4 借助Unicode 处理中文字符的常用作 /73
★3.4 计算机中的词与句 /74
3.4.1 词表与词向量 /75
3.4.2 词向量的原理及意义 /75
3.4.3 多项式分布 /76
3.4.4 什么是依存关系分析 /77
3.4.5 什么是TF /79
3.4.6 什么是IDF /79
3.4.7 什么是TF-IDF /80
3.4.8 什么是BLEU /80
★3.5 什么是语言模型 /81
3.5.1 统计语言模型 /81
3.5.2 CBOW与Skip-Gram语言模型 /81
3.5.3 自编码(Auto Encoding,AE)语言模型 /82
3.5.4 自回归(Auto Regressive,AR)语言模型 /83
★3.6 文本预处理的常用方法 /83
3.6.1 NLP数据集的获取与清洗 /83
3.6.2 基于马尔可夫链的数据增强 /84
4章 搭建编程环境——从安装开始,更适合零基础入门 /87
★4.1 编程框架介绍 /87
4.1.1 PyTorch介绍 /87
4.1.2 DGL库介绍 /88
4.1.3 支持BERT模型的常用工具库介绍 /89
★4.2 搭建Python开发环境 /89
★4.3 搭建PyTorch开发环境 /91
★4.4 搭建DGL环境 /95
★4.5 安装Transformers库 /96
2篇 基础——神经网络与BERT模型
5章 PyTorch编程基础 /100
★5.1 神经网络中的基础数据类型 /100
★5.2 矩阵运算的基础 /101
5.2.1 转置矩阵 /101
5.2.2 对称矩阵及其特性 /101
5.2.3 对角矩阵与单位矩阵 /101
5.2.4 阿达玛积(Hadamard Product) /102
5.2.5 点积(Dot Product) /102
5.2.6 对角矩阵的特性与作方法 /103
★5.3 PyTorch中的张量 /104
5.3.1 定义张量的方法 /105
5.3.2 生成随机值张量 /107
5.3.3 张量的基本作 /108
相关推荐