书籍详情
《数据结构与算法分析 C++语言描述 英文第四版 C++语言程序设计 计算机编程书籍 国外》[39M]百度网盘|亲测有效|pdf下载
  • 数据结构与算法分析 C++语言描述 英文第四版 C++语言程序设计 计算机编程书籍 国外

  • 出版时间:2017-08
  • 热度:12287
  • 上架时间:2024-06-30 09:38:03
  • 价格:9.0
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍




数据结构与算法分析 C++语言描述(第四版)(英文版)
            定价 109.00
出版社 电子工业出版社
版次 4
出版时间 2017年08月
开本 16开
作者 (美)Mark Allen Weiss(马克 . 艾伦 . 韦斯)
装帧 平装-胶订
页数
字数
ISBN编码 9787121323164


内容介绍

本书是数据结构和算法分析的经典教材,书中使用主流的程序设计语言C++作为具体的实现语言。书中内容包括表、栈、队列、树、散列表、优先队列、排序、不相交集算法、图论算法、算法分析、算法设计、摊还分析、查找树算法、后缀数组、后缀树、k-d树和配对堆等。本书把算法分析与C++程序的开发有机地结合起来,深入分析每种算法,内容全面、缜密严格,并细致讲解精心构造程序的方法。



关联推荐

本版特色如下:

*书中的阐述和算法均用C 新标准C 11的代码实现。

*unordered_map两个类模板的简要讨论。

*增加了基数排序和与选择相关问题下界的证明。增加了对AVL树删除算法的实现。使用新的union/find分析同时改进此前各版的较弱的O(Mlog*N)界。

 
目录

Chapter 1 Programming: A General Overview 1  

1.1 What’s This Book About? 1  

1.2 Mathematics Review 2  

1.2.1 Exponents 3  

1.2.2 Logarithms 3  

1.2.3 Series 4  

1.2.4 Modular Arithmetic 5  

1.2.5 The P Word 6  

1.3 A Brief Introduction to Recursion 8  

1.4 C Classes 12  

1.4.1 Basic class Syntax 12  

1.4.2 Extra Constructor Syntax and Accessors 13  

1.4.3 Separation of Interface and Implementation 16  

1.4.4 vector and string 19  

1.5 C Details 21  

1.5.1 Pointers 21  

1.5.2 Lvalues, Rvalues, and References 23  

1.5.3 Parameter Passing 25  

1.5.4 Return Passing 27  

1.5.5 std::swap and std::move 29  

1.5.6 The Big-Five: Destructor, Copy Constructor, Move Constructor, Copy  

Assignment operator=, Move Assignment operator= 30  

1.5.7 C-style Arrays and Strings 35  

1.6 Templates 36  

1.6.1 Function Templates 37  

1.6.2 Class Templates 38  

1.6.3 Object, Comparable, and an Example 39  

1.6.4 Function Objects 41  

1.6.5 Separate Compilation of Class Templates 44  

1.7 Using Matrices 44  

1.7.1 The Data Members, Constructor, and Basic Accessors 44  

1.7.2 operator[] 45  

1.7.3 Big-Five 46  

Summary 46  

Exercises 46  

References 48  

Chapter 2 Algorithm Analysis 51  

2.1 Mathematical Background 51  

2.2 Model 54  

2.3 What to Analyze 54  

2.4 Running-Time Calculations 57  

2.4.1 A Simple Example 58  

2.4.2 General Rules 58  

2.4.3 Solutions for the Maximum Subsequence  

Sum Problem 60  

2.4.4 Logarithms in the Running Time 66  

2.4.5 Limitations of Worst-Case Analysis 70  

Summary 70  

Exercises 71  

References 76  

Chapter 3 Lists, Stacks, and Queues 77  

3.1 Abstract Data Types (ADTs) 77  

3.2 The List ADT 78  

3.2.1 Simple Array Implementation of Lists 78  

3.2.2 Simple Linked Lists 79  

3.3 vector and list in the STL 80  

3.3.1 Iterators 82  

3.3.2 Example: Using erase on a List 83  

3.3.3 const_iterators 84  

3.4 Implementation of vector 86  

3.5 Implementation of list 91  

3.6 The Stack ADT 103  

3.6.1 Stack Model 103  

3.6.2 Implementation of Stacks 104  

3.6.3 Applications 104  

3.7 The Queue ADT 112  

3.7.1 Queue Model 113  

3.7.2 Array Implementation of Queues 113  

3.7.3 Applications of Queues 115  

Summary 116  

Exercises 116  

Chapter 4 Trees 121  

4.1 Preliminaries 121  

4.1.1 Implementation of Trees 122  

4.1.2 Tree Traversals with an Application 123  

4.2 Binary Trees 126  

4.2.1 Implementation 128  

4.2.2 An Example: Expression Trees 128  

4.3 The Search Tree ADT?aBinary Search Trees 132  

4.3.1 contains 134  

4.3.2 findMin and findMax 135  

4.3.3 insert 136  

4.3.4 remove 139  

4.3.5 Destructor and Copy Constructor 141  

4.3.6 Average-Case Analysis 141  

4.4 AVL Trees 144  

4.4.1 Single Rotation 147  

4.4.2 Double Rotation 149  

4.5 Splay Trees 158  

4.5.1 A Simple Idea (That Does Not Work) 158  

4.5.2 Splaying 160  

4.6 Tree Traversals (Revisited) 166  

4.7 B-Trees 168  

4.8 Sets and Maps in the Standard Library 173  

4.8.1 Sets 173  

4.8.2 Maps 174  

4.8.3 Implementation of set and map 175  

4.8.4 An Example That Uses Several Maps 176  

Summary 181  

Exercises 182  

References 189  

Chapter 5 Hashing 193  

5.1 General Idea 193  

5.2 Hash Function 194  

5.3 Separate Chaining 196  

5.4 Hash Tables without Linked Lists 201  

5.4.1 Linear Probing 201  

5.4.2 Quadratic Probing 202  

5.4.3 Double Hashing 207  

5.5 Rehashing 208  

5.6 Hash Tables in the Standard Library 210  

5.7 Hash Tables with Worst-Case O(1) Access 212  

5.7.1 Perfect Hashing 213  

5.7.2 Cuckoo Hashing 215  

5.7.3 Hopscotch Hashing 227  

5.8 Universal Hashing 230  

5.9 Extendible Hashing 233  

Summary 236  

Exercises 237  

References 241  

Chapter 6 Priority Queues (Heaps) 245  

6.1 Model 245  

6.2 Simple Implementations 246  

6.3 Binary Heap 247  

6.3.1 Structure Property 247  

6.3.2 Heap-Order Property 248  

6.3.3 Basic Heap Operations 249  

6.3.4 Other Heap Operations 252  

6.4 Applications of Priority Queues 257  

6.4.1 The Selection Problem 258  

6.4.2 Event Simulation 259  

6.5 d-Heaps 260  

6.6 Leftist Heaps 261  

6.6.1 Leftist Heap Property 261  

6.6.2 Leftist Heap Operations 262  

6.7 Skew Heaps 269  

6.8 Binomial Queues 271  

6.8.1 Binomial Queue Structure 271  

6.8.2 Binomial Queue Operations 271  

6.8.3 Implementation of Binomial Queues 276  

6.9 Priority Queues in the Standard Library 282  

Summary 283  

Exercises 283  

References 288  

Chapter 7 Sorting 291  

7.1 Preliminaries 291  

7.2 Insertion Sort 292  

7.2.1 The Algorithm 292  

7.2.2 STL Implementation of Insertion Sort 293  

7.2.3 Analysis of Insertion Sort 294  

7.3 A Lower Bound for Simple Sorting Algorithms 295  

7.4 Shellsort 296  

7.4.1 Worst-Case Analysis of Shellsort 297  

7.5 Heapsort 300  

7.5.1 Analysis of Heapsort 301  

7.6 Mergesort 304  

7.6.1 Analysis of Mergesort 306  

7.7 Quicksort 309  

7.7.1 Picking the Pivot 311  

7.7.2 Partitioning Strategy 313  

7.7.3 Small Arrays 315  

7.7.4 Actual Quicksort Routines 315  

7.7.5 Analysis of Quicksort 318  

7.7.6 A Linear-Expected-Time Algorithm for Selection 321  

7.8 A General Lower Bound for Sorting 323  

7.8.1 Decision Trees 323  

7.9 Decision-Tree Lower Bounds for Selection Problems 325  

7.10 Adversary Lower Bounds 328  

7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 331  

7.12 External Sorting 336  

7.12.1 Why We Need New Algorithms 336  

7.12.2 Model for External Sorting 336  

7.12.3 The Simple Algorithm 337  

7.12.4 Multiway Merge 338  

7.12.5 Polyphase Merge 339  

7.12.6 Replacement Selection 340  

Summary 341  

Exercises 341  

References 347  

Chapter 8 The Disjoint Sets Class 351  

8.1 Equivalence Relations 351  

8.2 The Dynamic Equivalence Problem 352  

8.3 Basic Data Structure 353  

8.4 Smart Union Algorithms 357  

8.5 Path Compression 360  

8.6 Worst Case for Union-by-Rank and Path Compression 361  

8.6.1 Slowly Growing Functions 362  

8.6.2 An Analysis by Recursive Decomposition 362  

8.6.3 An O( M log *N ) Bound 369  

8.6.4 An O( M |á(M, N) ) Bound 370  

8.7 An Application 372  

Summary 374  

Exercises 375  

References 376  

Chapter 9 Graph Algorithms 379  

9.1 Definitions 379  

9.1.1 Representation of Graphs 380  

9.2 Topological Sort 382  

9.3 Shortest-Path Algorithms 386  

9.3.1 Unweighted Shortest Paths 387  

9.3.2 Dijkstra’s Algorithm 391  

9.3.3 Graphs with Negative Edge Costs 400  

9.3.4 Acyclic Graphs 400  

9.3.5 All-Pairs Shortest Path 404  

9.3.6 Shortest Path Example 404  

9.4 Network Flow Problems 406  

9.4.1 A Simple Maximum-Flow Algorithm 408  

9.5 Minimum Spanning Tree 413  

9.5.1 Prim’s Algorithm 414  

9.5.2 Kruskal’s Algorithm 417  

9.6 Applications of Depth-First Search 419  

9.6.1 Undirected Graphs 420  

9.6.2 Biconnectivity 421  

9.6.3 Euler Circuits 425  

9.6.4 Directed Graphs 429  

9.6.5 Finding Strong Components 431  

9.7 Introduction to NP-Completeness 432  

9.7.1 Easy vs. Hard 433  

9.7.2 The Class NP 434  

9.7.3 NP-Complete Problems 434  

Summary 437  

Exercises 437  

References 445  

Chapter 10 Algorithm Design Techniques 449  

10.1 Greedy Algorithms 449  

10.1.1 A Simple Scheduling Problem 450  

10.1.2 Huffman Codes 453  

10.1.3 Approximate Bin Packing 459  

10.2 Divide and Conquer 467  

10.2.1 Running Time of Divide-and-Conquer Algorithms 468  

10.2.2 Closest-Points Problem 470  

10.2.3 The Selection Problem 475  

10.2.4 Theoretical Improvements for Arithmetic Problems 478  

10.3 Dynamic Programming 482  

10.3.1 Using a Table Instead of Recursion 483  

10.3.2 Ordering Matrix Multiplications 485  

10.3.3 Optimal Binary Search Tree 487  

10.3.4 All-Pairs Shortest Path 491  

10.4 Randomized Algorithms 494  

10.4.1 Random-Number Generators 495  

10.4.2 Skip Lists 500  

10.4.3 Primality Testing 503  

10.5 Backtracking Algorithms 506  

10.5.1 The Turnpike Reconstruction Problem 506  

10.5.2 Games 511  

Summary 518  

Exercises