本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
*本书讲解利用 Python 进行数据操作、处理、清洗、规整等的基本要点和具体细节,目标 是介绍 Python 编程语言及其用于数据的库生态和工具,掌握这些知识可以让你成为一名称职的数据分析师。
本书第1版出版于2012年,彼时基于Python的开源数据分析库(例如pandas)仍然是一个发展迅速的新事物,本书也成为该领域排名No1的经典畅销书,前两版中文版累计销售近30万册。
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python 3.10和pandas 1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。
本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颖,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。
学完本书,你将能够:
• 使用Jupyter notebook和IPython shell进行探索性计算。
• 掌握NumPy的基础功能和高级功能。
• 掌握pandas库中的数据分析工具。
• 使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。
• 使用matplotlib进行信息可视化。
• 使用pandas的groupBy功能对数据集进行切片、切块和汇总。
• 分析并处理规则的时间序列数据和不规则的时间序列数据。
• 利用完整、详细的示例学习如何解决现实中的数据分析问题。
*本书是Python数据分析经典畅销书的升级版,由Python pandas项目的创始人Wes McKinney撰写。自2012年第1版出版以来,迅速成为该领域的权威指南,并且为了与时俱进,作者也在对本书内容进行持续更新,以摒弃一些过时、不兼容的工具,添加新的内容,用以介绍一些新特性、新工具及方法。
*本书第3版针对Python 3.10和pandas 1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。
*作者
Wes McKinney是Voltron Data的联合创始人兼首席技术官、Python数据社区的活跃成员,同时也是在数据分析、金融和统计计算等领域推广使用Python的倡导者。Wes毕业于麻省理工学院,同时也是Apache软件基金会的Apache Arrow和Apache Parquet项目的项目管理委员会成员。
*译者
陈松,清华大学技术经济研究所副研究员,技术经济大数据实验室技术负责人,参与多项省部级、地区性课题研究。著有《区块链通识课50讲》,译有《DeFi与金融的未来》,具有 4 项国家发明专利。日常维护名为SeanCheney的博客、GitHub和公众号,阅读量上千万。