本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
采用基于任务的方式介绍机器学习
涵盖在构建机器学习模型时可能遇到的常见任务
提供近200个小任务的解决方案,以及代码
在代码中加深对理论的理解
《Python机器学习手册:从数据预处理到深度学习》采用基于任务的方式来介绍如何在机器学习中使用Python。书中有近200个独立的解决 方案,针对的都是数据科学家或机器学习工程师在构建模型时可能遇到的常见任务,涵盖从简 单的矩阵和向量运算到特征工程以及神经网络的构建。所有方案都提供了相关代码,读者可以 复制并粘贴这些代码,用在自己的程序中。
《Python机器学习手册:从数据预处理到深度学习》不是机器学习的入门书,适合熟悉机器学习理论和概念的读者阅读。你可以将本书作 为案头参考书,在机器学习的日常开发中遇到问题时,随时借鉴书中代码,快速解决问题。
Chris Albon是一位有十年经验的数据科学家和政治学家,他将统计学习、人工智能和软件工程应用到政治和社会活动以及人道主义活动中,譬如监查选举情况、灾难救助等。目前,Chris是肯尼亚创业公司BRCK的首席数据科学家。这家公司致力于为前沿市场的互联网用户构建一个稳健的网络。
韩慧昌,毕业于北京科技大学,ThoughtWorks高级咨询师,有多个大型企业AI项目经验。林然,有6年多的开发经验、4年多Python开发经验,在航空、零售、物流、汽车、通讯等多个行业应用过机器学习算法。徐江,毕业于瑞典皇家理工学院的系统生物学专业,曾就职于Thoughtworks软件技术有限公司。
“O’Reilly Radar 博客有口皆碑。”
——Wired
“O’Reilly 凭借一系列(真希望当初我也想到了)非凡想法建立了数百万美元的业
务。”
——Business 2.0
“O’Reilly Conference 是聚集关键思想领袖的绝对典范。”
——CRN
“一本 O’Reilly 的书就代表一个有用、有前途、需要学习的主题。”
——Irish Times
“Tim 是位特立独行的商人,他不光放眼于长远、广阔的视野并且切实地按照
Yogi Berra 的建议去做了:‘如果你在路上遇到岔路口,走小路(岔路)。’回顾过去, Tim 似乎每一次都选择了小路,而且有几次都是一闪即逝的机会,尽管大路也不错。”
——Linux Journal