Only the type signature has changed:

fn say_hello(out: &mut dyn Write) // plain function

fn say_hello<W: Write>(out: &mut W) // generic function

The phrase <W: Write> is what makes the function generic. This is a type parameter.
It means that throughout the body of this function, W stands for some type that imple-
ments the Write trait. Type parameters are usually single uppercase letters, by
convention.

Which type W stands for depends on how the generic function is used:

say_hello(&mut local_file)?; // calls say_hello::<File>

say_hello(&mut bytes)?; /] calls say_hello::<Vec<u8>>
When you pass &nut local_file to the generic say_hello() function, you're calling
say_hello::<File>(). Rust generates machine code for this function that calls
File::write_all() and File::flush(). When you pass &mut bytes, you're calling
say_hello::<Vec<u8>>(). Rust generates separate machine code for this version of
the function, calling the corresponding Vec<u8> methods. In both cases, Rust infers
the type W from the type of the argument. This process is known as monomorphiza-
tion, and the compiler handles it all automatically.

You can always spell out the type parameters:
say_hello: :<File>(&mut local_file)?;

This is seldom necessary, because Rust can usually deduce the type parameters by
looking at the arguments. Here, the say_hello generic function expects a &mut W
argument, and we're passing it a &mut File, so Rust infers thatW = File.

If the generic function you're calling doesn't have any arguments that provide useful
clues, you may have to spell it out:
// calling a generic method collect<C>() that takes no arguments

let vi = (0 .. 1000).collect(); // error: can't infer type
let v2 = (0 .. 1000).collect::<Vec<i32>>(); // ok

Sometimes we need multiple abilities from a type parameter. For example, if we want
to print out the top ten most common values in a vector, we'll need for those values to
be printable:

use std::fmt::Debug;

fn top_ten<T: Debug>(values: &ec<T>) { ... }

But this isn’t good enough. How are we planning to determine which values are the
most common? The usual way is to use the values as keys in a hash table. That means
the values need to support the Hash and Eq operations. The bounds on T must include
these as well as Debug. The syntax for this uses the + sign:

Using Traits | 259



